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In vivo bone lead measurement using K X-ray fluorescence (KXRF) has been used to estimate
long-term lead exposure, especially in adults. Relatively few studies have been conducted on
young subjects with this technique. To explore the measurement variability of KXRF bone lead
measurements in young subjects, the tibiae of two male cadavers from Boston, Massachusetts, 17
and 20 years of age, were obtained for repeated bone lead measurements. Bone lead concentra-
tions were measured using a grid of nine locations, 1 cm apart, centered at the midpoint of the
tibia. Each location was sampled using five 60-min measurements. Measured concentrations
ranged from c 0 to 11.8 pg PbIg bone mineral across a tibia with mean concentrations for the
midpoint locations of 0.8 pg Pblg bone mineral SD = 2.5 and 2.0 pg Pb/g bone mineral (SD =
1.9) for the left and right legs of the younger subject and 3.6 pg Pblg bone mineral (SD = 2.6)
and 6.0 pg PbIg bone mineral (SD = 3.3) for the left and right legs of the older subject. Although
bone lead concentrations did not vary significantdy by measurement location in an individual leg,
reported measurement uncertainty increased significantly at locations that were 1 cm from the
center of the tibia horizontaily (p c 0.0001). Symmetry in bone lead concentration between legs
was observed for the 17-year-old subject. Potential asymmetry between the left and right legs was
suggested for the 20-year-old subject (p = 0.06). These data describe the degree of variability that
may be associated with bone lead measurements ofyoung subjects with low bone lead concentra-
tions using a standard spot-source KXR instrument. Because of the importance of co -ducing
additional research on adolescent lead toxicity, further improvements to the precision of KXRF
measurement are needed. Key words: bone, cadavers, K X-ray fluoresence (KXRF), lead, young
adults. Environ Heabh Perpec 108:239-242 (2000). [Online 7 February 2000]
htp://ekpnetl.niebs.ni.gov/docs/200/108p239-242hoppin/abstract. btml

Environmental lead exposure continues to
be pervasive around the world. As environ-
mental exposure levels drop, new and more
sophisticated techniques are necessary to
measure lead exposure. Bone lead level is a
measure of cumulative lead exposure because
bone is the long-term repository for lead in
the body and approximately 95% of the lead
in adults is stored in bone (1,2). In vivo bone
lead measurement using K X-ray fluores-
cence (KXRF) allows noninvasive measure-
ment of bone lead levels. KXRF has been
used in epidemiologic studies of both occu-
pationally and environmentally exposed
adults on three continents to identify lead-
related health effects in adults (3).

For bone lead studies of young adults
and teenagers, efforts have been made to
improve the sensitivity of the instrumenta-
tion (4) and the measurement methodology
(5). Measurable bone lead levels have been
detected in young adults and adolescents
(5-10). However, these studies are character-
ized by a relatively high measurement error
to bone lead concentration ratio.

Although KXRF is a useful tool for
evaluating lead-related health effects in
adults, there are concerns about the use of
this technology in young adults and children
because of measurement limitations (11,12).

In addition to concerns about the low levels
of bone lead in young populations, the
kinetics of bone growth suggest that on the
cellular level, bone growth may be nonuni-
form, resulting in heterogeneous distribu-
tion of lead throughout the bone matrix as
osteoblasts build bone (13-15). To explore
the extent of measurement variability asso-
ciated with KXRF bone lead measurement
in young environmentally exposed subjects,
we obtained tibia from two teenaged cadav-
ers to perform multiple measurements
using KXRF.

Materials and Methods
Four cadaveric tibiae from two teenage males
were obtained from a hospital specimen
bank for multiple measurements of bone
lead concentration. The tibiae, collected for
bone transplantation, had no overlying tissue
and had been preserved by freezing. The
donors were 17 years of age (subject A) and
20 years of age (subject B). They had died in
traumatic accidents unrelated to lead expo-
sure. Although no information was available
regarding the subjects' medical histories, we
believe that they represent normal lead expo-
sure in the Boston, Massachusetts, area.
Tibiae were full length (approximately 36
cm in length) and 3 cm in width.

Bone lead was measured using the KXRF
bone lead scanner designed by our research
team for low-level lead measurement. This
instrument has the measurement sensitivity
necessary to measure adult bone lead at low
levels (4). The details of bone lead measure-
ment are described elsewhere (4,5). Briefly,
the instrument used a 109Cd 7-ray source of
activity 1.11 GBq and a high-purity germa-
nium detector in a back-scatter geometry.
The source to bone distance was 2 cm. The
collimator was positioned perpendicular to
the anterior tibial surface and the distance
between the source and bone was measured
by the technician. X-ray and 7-ray signals
were shaped and digitized and then acquired
by a multichannel analyzer board in a per-
sonal computer. The lead X-rays were nor-
malized to the elastic scatter peak; the elastic
scatter peak was primarily due to elements of
bone mineral (16). Normalization rendered
the accuracy of measurement relatively
insensitive to variations of bone shape, size,
and density. A 60-min sampling time was
used to compare the results to those from
previous studies ofyoung adults (5,6,9). The
bone lead scanner reported two values for
each measurement: a weighted mean esti-
mate of the lead concentration based on the
Kal and Kp1 peaks and an estimate of mea-
surement uncertainty based on the counting
statistics and fitting algorithms. The mea-
surement uncertainty was derived by a good-
ness-of-fit calculation of the scatter in the
KXRF spectrum and represented an estimate
of the SD of multiple measurements.

Five 1-hr measurements were made at
nine locations on each tibia. Locations near
the midpoint were sampled to evaluate bone
heterogeneity. A template centered at the
midpoint of the tibia was used to mark the
locations 1 cm above and below the mid-
point and 1 cm to the right and left of the
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center. Sample locations were marked direct-
ly on the bone with a lead-free indelible
marker. Figure 1 details the measurement
locations. All measurements from one loca-
tion were collected over one 5-hr period to
reduce measurement variability associated
with sample handling. The tibia was
restrained with straps to prevent shifting
during sample collection. Tibiae were stored
in a freezer between measurements to pre-
vent biologic growth on bone tissue. All data
were collected over a 1-month period.

We used the STATA program (17) for
descriptive statistics and graphical display of
the data. Analysis of variance (ANOVA)
techniques were used to evaluate the role of
location on bone lead concentration and
measurement uncertainty. Student's t-tests
were used to test differences between subjects
and between legs.

Figure 1. Measurement locations on shaft of the
tibia. All locations, except the midpoint of the tibia
(M), are 1 cm from the tibia midpoint.

Results

Bone lead concentration was measured 5
times at nine locations on each tibia. One
hundred seventy-seven of 180 possible mea-

surements were completed on these four
tibia. In three instances, the scanner failed to

complete the fifth measurement at that loca-
tion because of a data storage error. Point
estimates of bone lead concentration ranged
from - 2.4 to + 9.6 ig Pb/g bone mineral
(j.g/g) for subject A and from - 3.7 to + 11.8
ig/g for subject B. Figure 2 shows lead con-

centrations at each measurement location as

box plots for subjects A and B. Summary
statistics for each tibia and midpoint are pre-

sented in Table 1. The overall mean bone
lead concentration was significantly greater

for subject B (subject A: overall mean = 2.6,
SD = 2.6; subject B: overall mean = 4.5, SD
= 3. 1, p < 0.0001). The coefficients of varia-
tion for measures from the tibia midpoint
ranged from 55% for the right leg of subject
B to 320% for the right leg of subject A.

When data from both subjects were ana-

lyzed together, there was no significant differ-
ence in values for the right and left legs of the
subjects using two-way ANOVA to control
for measurement location and subject. When
restricted to subject B, there was a marginally
significant difference between the left and
right leg lead levels (p = 0.06).

Overall, lead concentration did not differ
by measurement location. Again, when

7;375 7.5

U L

345~~~~~~~~~~~~Z
* S '0 > 'S1.-,t

X~~~~~~~~~~~~~~~~~~~~~~ ccN.M-=cc L),c_yXr.
COL - C CL

Lef le lonaie Righ leg leceiom

,l~~~~~c ao A!A A J ao|

R1.°e 1 1 ee

~~~~~~U
U ..-~~~~~~~c - 3 c c c U c

CLC EL CL L, , I f 0
Lef t leafnRigh le locnie

Figure 2. Box plots of bone lead measurements by subject and leg. Shown are the median (center line in
box); the 25th and 75th percentiles (the top and bottom borders of the box), 3/2 the interquartile range (the
vertical lines), and the extreme values (circles) (17). Location codes: upper, 1 cm above midpoint; center,
at midpoint vertically; lower, 1 cm below midpoint; L, 1 cm left of center; C, at midpoint horizontally; and R,
1 cm right of center. (A) Bone lead measurements for subject A (17-year-old male, Boston, MA, 1995). (B)
Bone lead measurements for subject B (20-year-old male, Boston, MA, 1995).

restricted to subject B, a marginally signifi-
cant difference among the nine leg locations
was observed using ANOVA (p = 0.1).
However, as illustrated in Figure 2, the range
of observations at each location was broad in
both subjects.

Measurement uncertainty associated with
bone lead measurements was influenced by
horizontal location; measurements from the
center of the tibia had significantly lower
measurement uncertainty than measurements
from either the right or left of center (p
< 0.0001) (Figure 3). No differences were
observed for vertical changes from the mid-
point. Uncertainty estimates by subject and
leg are presented in Table 2.

In ANOVA models, the SD for the
mean bone lead concentration at each loca-
tion did not differ from the average reported
measurement uncertainty for that location.
The ratio of the actual SD to the reported
measurement uncertainty was 1.03 for sub-
ject B and 1.10 for subject A.

Discussion
Using the bone lead scanner that we used in
previous studies, we measured the lead con-
centration at nine locations near the mid-
point of the tibia in both legs of two male
cadavers 17 and 20 years of age. Bone lead
concentrations differed between subjects and
marginally between legs for one subject.
Bone lead concentrations were variable,
although not statistically different, by mea-
surement location on the tibia. Reported
measurement uncertainty was significantly
higher at locations that were 1 cm from the
center of the tibia horizontally (Figure 3).

The bone lead levels observed in these
two subjects are consistent with other low
values measured for young adult subjects
from the Boston area (5-7). However, as
shown in Figure 4, the variability in the
measures from the tibia midpoint overlap
with the population distributions observed
in these other studies. Figure 4 suggests that

Table 1. Summary by subject and leg of bone lead
levels measured by KXRF.

Bone mineral
(pg Pb/g)

Location Measurements Mean ± SDa Range
Subject Ab
Left legc 44 2.7 ± 2.7 -2.3-9.6
Midpointd 4 2.0 ± 1.9 -0.4-4.3

Right legc 45 2.6 ± 2.7 -2.4-8.0
Midpointd 5 0.8 ± 2.5 -1.7-3.8

Subject Be
Left legc 44 5.2 ± 3.2 -2.4-11.8
Midpointd 5 3.6 ± 2.6 -0.4-6.2

Right legc 44 3.9 ± 3.0 -3.7-10.3
Midpointd 5 6.0 ± 3.3 1.3-10.3

'Mean Pb concentration. bl7-year-old male. cRepresents
the average of all measurements at the nine locations.
dMidpoint values are included in the summary results for
each leg. e20-year-old male.
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a major portion of the observed population
variability in young subjects is associated with
variability in the bone lead measurement.

The distribution of lead in the bones of
young adults and teenagers has not been well
characterized. Lead homogeneity has been
investigated in the bones of older adults
using both destructive and nondestructive
methods (18-21). Wittmers et al. (157) used
atomic absorption analysis and found no sig-
nificant difference in the cortical bone lead
concentrations of adult cadavers along the
length of the tibia shaft, although some vari-
ation in lead concentration was reported.
Schidlovsky et al. (20) analyzed cortical bone
samples from adults with proton-induced X-
ray emission (PIXE), a technique with the
ability to sample a much smaller area than
atomic absorption spectroscopy or KXRF,
and found that the variation in bone lead in
the tibia occurred on the microscale mea-
sured by PIXE rather than the macroscale
measured by KXRF. Lindh et al. (18) reported
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Figure 3. Box plots of measurement uncertainty
by location across tibia shaft. Summary results for
both subjects and both legs. Shown are the medi-
an (center line in box); the 25th and 75th per-
centiles (the top and bottom borders of the box),
3/2 the interquartile range (the vertical lines), and
the extreme values (circles) (17). Left = 1 cm left
of the center line of the tibia; center = midpoint of
the tibia + samples 1 cm above and below; right =
1 cm right of the center line of the tibia.

Table 2. Summary by subject and leg of reported
measurement uncertainty for bone lead levels
measured by KXRF.

Bone mineral
(pg Pb/g)

Location Measurements Mean ± SDI Range
Subject Ab
Left legc 44 2.4 ± 0.2 2.1-3.2
Midpointd 4 2.2 ± 0.1 2.1-2.3

Right legc 45 2.4 ± 0.2 2.1-2.8
Midpointd 5 2.2 ± 0.1 2.1-2.3

Subject Be
Left legc 44 2.4 ± 0.2 2.1-2.9
Midpointd 5 2.2 ± 0.1 2.1-2.3

Right legc 44 2.4 ± 0.2 2.1-3.0
Midpointd 5 2.3 ± 0.1 2.3-2.4

'Mean measurement uncertainty. h17-year-old male.
'Represents the average of all measurements at the nine
locations. 4lidpoint values are included in the summary
results for each leg. 20-year-old male.

that the distribution of lead in the femur of a
lead-exposed worker was not uniform,
whereas the distribution of lead in the femur
was uniform in an environmentally exposed
adult. Our data are suggestive of differences
in bone lead concentration by location
(Figure 2B); however, we have insufficient
power in our overall ANOVA analysis to
demonstrate statistically significant differ-
ences between locations. Whether this differ-
ence represents actual heterogeneity or the
result of measurement variability at low lev-
els cannot be determined by KXRF analyses.
In adults, symmetry between the left and
right sides of the body and along the tibia
shaft have been demonstrated using both
cadavers and living subjects (19,21). In one
subject, we detected a marginally significant
difference in mean bone lead concentration
between the left and right legs.

The measurement uncertainty has been
described as an estimate of the SD of multiple
measurements (4,21). In experiments with
standards ofknown concentration, the report-
ed measurement uncertainty underestimated
the actual SD of multiple measurements by
up to 30% (21). In vivo measurements from
adults suggest that the reported measurement
uncertainty underestimates the actual SD by
18% (21). Uncertainty estimates for our bone
samples were not significantly different from
the actual SD; the reported values were
3-10% lower than the actual values. The
good agreement between the reported and
actual SD in our study may be associated with
the absence of overlying tissue on the tibiae,
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the consistent position for all five measure-
ments, and the 60-min measurement time.

Even with the high relative measurement
error, significant associations have been seen
with bone lead levels in young adults. A
study of 23 subjects 18-20 years of age mea-
sured for two 60-min periods found a strong
correlation of bone lead with age (5). In a
study of 10- to 13-year-olds, Needleman et
al. (8) found an increased rate of delinquency
in subjects with higher bone lead levels. Kim
et al. (22) found that dentine lead levels at 6
years of age were associated with bone lead
levels in young adults 18-22 years of age. In
a Mexico City population of 11- to 21-year-
olds, Farias et al. (9) demonstrated significant
correlations with environmental lead sources
and bone lead concentration.

Other investigations have had difficulty
identifying differences in bone lead levels
among subjects younger than 21 years of age.
In a large study using this KXRF instrument,
no associations were identified between bone
lead levels and demographic and environ-
mental factors in 167 subjects who were
13-19 years of age, although the bone lead
levels measured were comparable to those
seen in previous studies (6). In a community
based study of environmentally exposed sub-
jects, the bone lead levels of the subjects
younger than 20 years of age were not statis-
tically different from zero (23). In a cohort of
subjects with known childhood lead expo-
sure, bone lead levels measured at 19-21
years of age were not significantly different
between exposed and unexposed subjects;

'i'i 1 1

SubjecA SM"t
Figure 4. Comparison of bone lead concentrations measured in subjects 14-21 years of age using KXRF.
Studies include Hoppin et al. (5) (n = 23, age 18-21 years, 2 x 60-min measurements); Hoppin et al. (6) (n =
168, age 13.-19 years, 1 x 60-min measurement); Kim et al. (7) (n = 58, age 18.7-21.8 years, 1 x 30-min
measurement); Stokes et al. (10) (exposed, n = 58, age 19-21 years, 1 x 30-min measurement; unexposed,
n = 61, age 19-21 years, 1 x 30-min measurement); Farias et al. (9) (n = 98, age 11-21 years, 1 x 60-min
measurement). "Exposed. bUnexposed.
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however, a significant elevation in bone lead
concentration was noted among exposed sub-
jects older than 21 years of age (10). The
inability to detect differences in bone lead
concentrations in this age group using KXRF
may be associated with a variety of issues,
including the relatively high measurement
error in young subjects, the heterogeneity of
the bone matrix with respect to lead in the
growing subjects, a true lack of difference in
bone lead levels, or some combination of all
of these. A Canadian study of bone lead
concentration in cadaver vertebrae found the
lowest bone lead concentrations among sub-
jects 12-19 years of age, with significantly
higher concentrations among both younger
(1-11 years of age) and older subjects (> 20
years of age) (24). Thus, the 12- to 19-year
age range may have the lowest bone lead con-
centration and therefore may be the most dif-
ficult to study with KXRF.

Measuring low-level lead exposure in
teenagers and young adults is challenging.
Even with a relatively sensitive bone lead
scanner that provides an accurate estimate of
the variability in the reported bone lead con-
centration, the potential for bone heterogene-
ity and measurement variability limit the
interpretations of bone lead concentrations
reported with one measurement. In our
study, heterogeneity was observed to some
extent both between legs and among loca-
tions. The impact of potential heterogeneity
of the bone matrix can not be adequately
evaluated in light of the low lead concentra-
tions present and the inherent measurement
variability of the KXRF method. Further
exploration of this issue should utilize atomic

absorption spectrometry or PIXE to identify
patterns of spatial variation of lead in the
bones of young adults. Nevertheless, even
with the high degree of measurement error
relative to lead concentration, investigators
continue to see subtle effects of bone lead lev-
els in young adult subjects, especially those
with known lead exposure who are older
than 20 years of age. Because of the impor-
tance of understanding the relationship of
lead exposure to behavioral outcomes in
teenagers (8), additional research should be
conducted to improve the precision of KXRF
measurements in this age group.
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